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ABSTRACT

This paper describes the programmatic and technical challenges associated with developing Prognostics
and Health Management (PHM) capabilities in an advanced new weapons platform. At the highest level,
it  presents  specific  strategies  to  tie  PHM  benefits  and  objectives  to  logistics  support  concepts  in  a
measurable way.  The authors also provide examples of the use of this approach to ensure that PHM
elements  have  bought  their  way  onboard  the  aircraft.  At  the  next  level,  the  authors  evaluate  the
Verification and Validation (V&V) approach used within the PHM algorithm and sensor suite. Forward
fit applications, where field and final system data is usually less available, present additional hurdles to
the  verification  of  diagnostic  coverage,  detection  rates,  and  false  alarm rates.  Specific  tools  will  be
demonstrated by the authors to provide V&V use cases using a combination of test stand development
data, similar component failure data, and, ultimately, fielded data. Metrics for fault detection, diagnosis,
and prognosis functional elements will be presented. In addition, the authors discuss the use of simulation
and real fault data, as well as a strategy developed to project the fielded performance of the system. The
effects of signal noise, measurement uncertainty, and threshold settings are addressed. The concept of
‘performance metric growth’ with field data availability is also discussed and the specific application of
these techniques and tools to the challenges in new aircraft deployment is offered.

INTRODUCTION AND MOTIVATION

With the U.S.  Department  of  Defense (DoD) Condition-based Maintenance Plus  (CBM+) initiatives,
Acquisition Category (ACAT) program managers are required to “optimize operational readiness through
affordable, integrated, embedded diagnostics and prognostics …automatic identification technology; and
iterative technology refreshment.” [1] It is also DoD policy that Condition-based Maintenance (CBM) be
“implemented to improve maintenance agility and responsiveness, increase operational availability, and
reduce life cycle  total ownership costs.” [2]  The goal of  CBM is to perform maintenance only upon
evidence  of  need.  The  primary  tenets  of  CBM  include:  “designing  systems  that  require  minimum
maintenance;  need-driven  maintenance;  appropriate  use  of  embedded  diagnostics  and  prognostics
through the application of reliability centered maintenance principles; improved maintenance analytical
and production technologies; automated maintenance information generation; trend based reliability and
process  improvements;  integrated  information  systems  providing  logistics  system response  based  on
equipment maintenance condition; and smaller maintenance and logistics footprints.”[1] 
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Condition-based Maintenance Plus (CBM+) expands on existing CBM principles and emphasizes their
focus on “maintenance processes and capabilities derived, in large part,  from real-time assessment  of
weapon system condition, obtained from embedded sensors and/or external tests and measurements.”[1]
This capability can only be achieved through appropriate  diagnostic  and prognostic technologies.  As
quoted directly from DoD Instruction 5000.2:

Diagnostics: Applicable and effective on-board monitoring/recording devices and software, e.g. built-
in test (BIT), that provide enhanced capability for fault detection and isolation, thus optimizing the
time to repair. Emphasis must also be on accuracy and minimization of false alarms. 

Prognostics: Applicable and effective on-board monitoring/recording devices and software, e.g. BIT,
that monitor various components and indicate out of range conditions, imminent failure probability,
and similar proactive maintenance optimization actions. [1]

The Defense Acquisition Guidelines reiterate the need for the early teaming with appropriate systems
engineering to clearly define and understand the operational envelope and range of conditions to properly
design the Built-In-Test  (BIT),  Built-In-Self-Test (BIST),  and diagnostic mechanisms,  including false
alarm mitigation. This DoD policy and the experience that underlies it clearly indicates the need for false
alarm mitigation techniques, design principles, and analytical tools to assist developers and stakeholders. 

The significance of this opportunity is also apparent considering the recent increase in Performance-based
Logistics (PBL) business models [3], which are fast becoming the DoD's preferred approach for product
support implementation. The essence of PBL is buying performance outcomes, not individual parts or
repair  actions.  The motivation is  to share the risk (and reward) over the life cycle  of the asset.  The
contracts are balanced to meet the warfighter requirements and the support strategy is managed by the
support of the Product Support Integrator. This is a major shift from the traditional approach to product
support,  which emphasizes buying set levels of  spares, repairs,  tools,  and data. The new focus is on
buying a predetermined level of availability to meet the warfighter's objectives.

This new paradigm is accomplished through Performance-based Agreements.  Extensive business case
analysis is conducted to assess the benefits for the DoD and contractor performing the integrator role.
Earned  Value  Management  (EVM)  and  associated  program analysis  tools  are  typically  used  in  the
implementation and negotiation of a PBL contract. Central to the business case analysis is the assessment
of PHM system performance. If the health management system possesses insufficient coverage of the
critical components/replaceable units, ineffective incipient fault detection capability, or high false alarm
rates, then the risk for the contractor may be too great to make a cost effective business case. If such a
situation occurs, neither the government nor the contractor benefits. Thus, verifying functionality, having
sufficient PHM coverage, and mitigating false alarms are significant concerns in realizing these logistics
and support paradigms. 

Autonomic  Logistics  (AL)  is  the  automation  of  this  logistics  environment  such  that  little  human
intervention is needed to engage the logistics cycle. The idea for the AL system was drawn from the
workings of the autonomic nervous system of the human body, whose functions occur autonomically:
they are spontaneous and based on some internal stimuli. An AL system will be able to operate without
the  conscious  intervention  of  a  human.  Examples  of  actions  that  will  be  automated  within  the  JSF
supportability concept include maintenance scheduling, flight scheduling, and ordering spare parts. 

Prognostics  and Health Management  (PHM) is  the  key enabler  for  the  Autonomic  Logistics  support
concept.  In  fact,  the  cornerstone of  Autonomic  Logistics  is  an  advanced diagnostic  and  PHM-based
system.  The  PHM  system provides  the  data,  information,  and  knowledge  to  initiate  the  Autonomic
Logistics chain of events.

5th DSTO International Conference on Health & Usage Monitoring



AIAC12 – Twelfth Australian International Aerospace Congress
19 – 22 March 2007

Figure 1: AL System Technical Solutions [11]

The AL system is based on five (5) key concepts:

1. Smart and Reliable Aircraft – An aircraft with reliability, maintainability, and an inherent, design-in
PHM system enables the entire AL system concept.

2. Technology Enabled and Supported Maintainer – A maintainer must be equipped with a leading
edge technical support system that provides the training, information, tools and equipment to do his/her
job.

3. Integrated Training Environment – A training environment that employs the latest technology and
research on learning is needed to provide a comprehensive, integrated capability to mission–qualify pilots
and maintainers, regardless of their locations.

4. Intelligent Information System – An information infrastructure that interfaces with the air vehicle,
legacy  support  systems,  supporting  commercial  enterprise  systems,  and  the  warfighter  provides  an
effective portal to JSF information and create an intelligent system for maintaining and operating the JSF
among multiple armed services and international partners.

5.  Responsive  Logistics  Infrastructure –  The  system should  be  sufficiently  responsive  to  support
requirements within a timeframe that allows the JSF weapon system to generate the required number of
effective sorties at the least cost.

To  enable  these  maintenance  and  logistics  concepts  for  our  systems  of  the  future,  we  need  the
development and implementation of advanced Prognostics and Health Management (PHM) technologies.
The remainder of this paper will focus on the challenges involved in developing and implementing such
incipient fault detection and true prognostic capabilities, as well as outlining the tools, techniques, and
approaches undertaken to achieve these capabilities.
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ANATOMY OF A FAILURE AND WHEN WE NEED TO KNOW 

Prognostics and Health Management (PHM) is the name given to the capability being developed by the
JSF to enable the vision of Autonomic Logistics and meet  its overall  affordability and supportability
goals.  In  PHM,  the  term  ‘prognostics’  includes  the  broader  functions  of  fault/failure  detection,
fault/failure  isolation,  enhanced  diagnostics,  material  condition,  performance  monitoring,  and  life
tracking, rather than just prognostic functions alone.  Envisioning an initial fault-to-failure progression
timeline (shown in Figure 2) is one way of exploring the relationships between prognostic elements. This
timeline starts with a new component in proper working order, indicates a time where an early incipient
fault  develops,  then depicts how, under continuing usage,  the component  reaches a failure state and,
eventually, a state of secondary system damage and complete catastrophic failure.

Figure 2: Failure Progression Timeline

Diagnostic capabilities have traditionally been applied at or between the initial detection of a system,
component, or subcomponent failure and complete system catastrophic failure. More recent diagnostics
technologies  are  enabling  detections  to  be  made  much  earlier  at  incipient  fault  stages.  In  order  to
maximize the benefits of continued operational life of a system or subsystem component, maintenance
will often be delayed until the early incipient fault progresses to a more severe state (but before an actual
failure event).  This area between the very early detection of an incipient  fault  and its  progression to
system or component failure is the realm of true prognostics. If an operator has the will to continue to
operate a system and/or component with a known incipient fault present, he will want to ensure that this
can be done safely and will want to know how much useful life remains at any point along this particular
failure progression timeline. This is the specific domain of real predictive prognostics, or “the Big P” –
being able to accurately predict useful life remaining along a specific failure progression timeline for a
particular system or component. To actually accomplish these accurate useful life remaining prediction
capabilities requires many tools in your prognostic tool kit. Sometimes available sensors currently used
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for  diagnostics  provide  adequate  prognostic  state  awareness  inputs;  sometimes  advanced  sensors  or
additional incipient fault detection techniques are required. Other necessary prognostic tools include: a
model or set of models that represent the understanding of a particular fault-to-failure progression rate;
material  physics  of  failure  models;  statistical  and/or  probabilistic  based  models;  models  to  represent
failure effects across interconnected subsystems; and models to account for and address future operational
mission usage. 

Figure 3: Prognostic Perspectives and Questions

As  true  prognostic  capabilities  evolve  and  are  developed  for  particular  applications,  many  difficult
questions need to be addressed. Perhaps the first basic question to ask is: how far does your specific
application want or need to “see” into the future? The answer to this question will very much depend on
your  application specific  prognostic  perspectives.  From this  perspective,  this  first  question generates
many additional considerations. Some of these include: specific needs vs. recognized benefits; what is
possible and feasible; capabilities available vs. those desired or highly valued; technology shortfalls to be
filled; integration, implementation, and usage strategies; and what is good enough.  Figure 3 represents
some of these questions from a prognostic perspective by using a bus traveling around a globe as an
analogy. This depiction can be used to address the concept of the predictive prognostic horizon – in this
case, how early you want to “see” or detect the bus in order to do something useful with the information.

Predictive prognostics is one of the fundamental factors that influence the decision to shift to a Condition-
based Maintenance business approach. Original Equipment Manufactures (OEMs) and key Suppliers are
incentivized to make capital investments in new, innovative prognostic technologies to improve logistic
support  capabilities, knowing  that  their  involvement  (and  related  profits)  will extend  well  into  the
production and post-production phases of modern military aircraft. Additional long-term, performance-
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based contractual arrangements would be established between the prime contractors, their sub-suppliers,
and government organic depots.

A performance-based approach is intended to:

 Reduce Total Ownership Costs.

 Increase Warfighter Confidence and Satisfaction.

 Facilitate Contractor-Government Integration and Communication.

 Reduce the Demand for Logistics.

 Incentivize Reliability Enhancements.

 Decrease the Resource Requirements for Support.

 Encourage  Early  and  Continuing  Emphasis  on  Diminishing  Manufacturing  Sources  and
Obsolescence Planning.

 Centralize Management.

 Create a Real Time Problem Response (24/7).

 Optimize the Technology Insertion.

 Utilize a consistent Life-Cycle Cost Analysis.

 Optimize Infrastructure Harmonization and Asset Utilization.

The vision is that legacy, renegotiable, price-based contracting will be abandoned over time as a gradual
shift  toward  the  new long-term Performance-based  concept  occurs.  For  example,  cost-type  contracts
could be used during the Low Rate Initial  Production (LRIP) phase.  As the design matures,  defined
enablers are achieved and sufficient  reliability and cost  data are obtained.  At this point,  the contract
would transition to a fixed-price type contract, with performance incentives linked to metrics identified
during LRIP. Through joint cooperative forums, client (i.e., Government) and contractor would establish
the criteria and performance metrics for the transition in accordance with substantiated data, maturity of
process, pricing, and performance responsibility. Total transition to a fixed-price type contract would be
tied to obtaining sufficient reliability and cost data. However, the actual transition point would depend on
the system and air vehicle peculiarities and maturity. The final decisions for transition sequencing would
be determined during LRIP using factors such as achieved and stable reliability, business case analysis
impact, incentives, and the maturity of depot level repair.

In  order  to  implement  the  Performance-based  approach,  the  strategy  will  revolve  around  how core
capabilities  for  dealing with OEMs/suppliers  are  established,  refined,  and executed in  relationship to
delivering performance to the user community.  This is a challenge in itself – an additional challenge
figuring out how PHM capabilities and their associated data product will assimilate into it.

Recognizing  the  need  for  the  aforementioned  contractual  approach  to  ensure  that  system  design  is
optimally balanced between total ownership cost and system/equipment performance requirements, it is
mandatory to describe the development  of a  best  value business  arrangement.  A best  value business
arrangement should contain affordability initiatives targeted at continuous cost reduction and technology
refresh/insertion. The establishment of a business model is the framework for assessing the correlation of
business  elements  and attributes,  which are  the functions  and tasks  required to  perform the logistics
operations  and that  will  allow one to  assess  the  best  value solution.  However,  while  it  is  clear  that
prognostics  influences  various  attributes  (i.e.,  support  equipment,  maintenance,  supply  chain,  spares
ownership/management,  propulsion  support,  etc.),  it  is  a  challenge  to  develop  valid  and  measurable
metrics to quantify the impact of the various PHM technologies on individual model attributes and to
include these in the business model so that the resultant analyses reflect the true value of prognostics to
the proposed business case.
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KEY TECHNICAL CAPABILITIES AND METRICS

One  of  the  major  challenges  to  the  designers  of  modern  PHM  systems  is  the  need  for  developed
diagnostic and prognostic methods that are truly capable of handling real-world uncertainties. Such real
world  uncertainties  cause  havoc  with  deterministic  approaches  leading  to  high  false  alarm  rates,
inaccurate predictions, incorrect decisions, and an overall PHM system that is not very robust. Some of
the issues uncertainty presents to the designer are elaborated below, including issues associated with
various steps in the predictive process, the estimate of current condition, the prediction of time-to-failure
(or time remaining),  and the choice of appropriate lead times (how far ahead to predict),  as well  as
choices for an overall prognostic methodology.

Incipient Fault  Detection: In order to predict remaining life or time-to-failure,  you must  first  know
where the current condition stands along the continuum of various possible health states, which ranges
from normal to failing conditions.  Assuming that the computed feature (or condition/health index) is
sensitive to a change brought about by a damage or degradation mechanism, the system designer’s goal is
to maximize that sensitivity, thus separating the mean values while minimizing the variance to decrease
the spread and resultant overlap of the distributions  (see  Figure 4). For successful diagnostic systems,
threshold setting is  most  effectively accomplished by balancing the P(False Alarm)  and P(Detection)
using  available  data  sets,  simulations,  and  models,  as  appropriate.  The  P(Correct  Rejection)  is  the
complement  of  the  P(False  Alarm).  Similarly,  the  P(Missed  Detection)  and  P(Detection)  are
complementary. Note that P(False Alarm) and P(Detection) are related but are not complementary, as is
sometimes incorrectly assumed.

P(FA) = 1-P(CR)

P(D) = 1-P(MD)

P(FA) = 1-P(CR)
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Figure 4: Relationship of Statistical Detection Metrics

The concept of improved performance with increased separability is also addressed with these curves. As
seen in Figure 4, if we can increase the separability (that is, move the means further apart), then we will
improve the P(FA) and P(D) performance. In addition, one can envision that, even if the mean values
remain the same, increased separability will cause the distributions to become narrower and steeper with
less  probability  in  the  tails,  thus  decreasing  the  P(FA)  and  increasing  the  P(D).  Maximizing  the
separability and reducing the computed feature variances as much as possible is key to achieving good
PHM system performance.  Fundamentally, good incipient fault detection and false alarm mitigation is
handled using proper feature selection with (high separability/discriminability) and the use of intelligent
decision fusion to effectively trade false alarm rates with missed detection rates. 
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Unfortunately,  for  newly  designed  systems,  there  is  often  insufficient  data  to  predict  the  faulty
distribution.  In  this case,  we need to  extrapolate  the  data  from incipient  faults  in  similar  systems  to
estimate where this distribution might reside. In many ways, this is analogous to estimating a failure rate
on a new piece of equipment using legacy component reliability data. We will  need to combine data
and/or models from other similar degradation experiences with our engineering judgment to estimate the
unhealthy or faulted distribution. We accept that this method has is uncertain and attempt to quantify the
uncertainty as best as possible.

Figure 5 displays the probability distributions for the ImpactEnergy™ bearing fault detection algorithm,
which  provided  a  much  higher
confidence  in  fault  detection  than
traditional methods. This figure clearly
displays  a  lower  variance  in  the  spall
progression  data  than  typically
achievable  with  traditional  methods.
This  affects  both  the  false  alarm  and
missed  detection  rates.  Also,  note  the
decrease  in  probability  percentages  of
both  rates  due  to  a  greater  separation
between  the  respective  means  of  the
distributions.  Table  1 provides  a
summary and comparison  of  the  False
Alarm and  Missed  Detection  rates  for
three  bearing  fault  detection  methods
tested under the seeded fault  and spall
conditions.  From  this  example,  it  is
apparent  that  feature  selection  and
discriminability play major roles in false alarm mitigation and good incipient fault detection. 

Many  well-developed  metrics  for
analysis  of  detection exist;  however,  a
consolidated tool  that  incorporates raw
data,  algorithm interfaces,  and  metrics
based analysis would prove valuable for
development  and long term support  of
specific applications. We have initiated
work on such a tool and its current user
interface  is  shown  here.  One  of  the
primary  objectives  of  the  tool  is  to
better  automate  and  configuration
control  the  analysis  of  this  type  to
produce  not  only  robust  incipient
detection algorithms, but also traceable
performance  characteristics  for  these
algorithms.
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Table 1 – Results of for Three Bearing Fault
Detection Methods
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Figure 6: Two FAST PHM™ Tool Interfaces

Diagnosis:  Perhaps better referred to as isolation, fault diagnosis is the next step in the formation of a
PHM result. While the previous section dealt with the detection of the existence of a fault, diagnosis
refers to the identification of the failed, or, more importantly, failing component. Table 2 presents three
useful metrics for analysis of diagnostic effectiveness: the confusion matrix, the probability of isolation,
and the Kappa Coefficient. Probability of isolation refers to the percentage of all component failures that
the monitor is able to unambiguously isolate. The Kappa Coefficient represents how well an algorithm is
able to correctly classify a fault  (with a correction for chance agreement).  The Kappa Coefficient  is
bounded by –1 and 1, with 0 representing chance agreement and negative numbers indicating that the
algorithm performed  worse  than  random guessing.  Together,  these  metrics  form a  core  analysis  of
diagnostic effectiveness. However, as these and related diagnostic metrics are treated in many texts on the
matter, we now turn our attention to the less well known matter of prognostics.

Prognostics: A prognostic vector typically indicates time-to-failure and an associated confidence in that
prediction. However, the definition and implementation of prognostic performance metrics must consider
multiple viewpoints and objectives. Two such viewpoints follow:

1. The maintainer’s viewpoint: When should I perform maintenance? What is the most appropriate
time (given such constraints as availability of spares, etc.) to maintain critical equipment?

2. The field commander’s viewpoint: Are my assets available to perform the mission? What is the
confidence level that critical assets will be available for the duration of the mission? Or, given a
certain confidence level, what is the expected time-to-failure of a particular asset?
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Answering the maintainer’s question requires  an estimate of the remaining useful lifetime of a failing
component  and  an  assignment  of  uncertainty  bounds  to  the  trending  curve  that  will  provide  the
maintainer with the earliest and the latest times to perform maintenance and the associated risk factors
when maintenance action is delayed. 

Answering the commander’s question requires one of two things: 1) an estimate of the confidence level
assigned  to  the  completion  of  a  mission  considering  mission  duration,  expected  operating  and
environmental conditions, other contingencies, etc., or 2) a means to estimate the component’s time-to-
failure given a desired confidence level. Thus, the prognostic curve (the output of prognostic routines)
must be modulated by a time-dependent distribution (statistical/Weibull or possibilistic/fuzzy) that will
provide uncertainty bounds. An appropriate integral of such a distribution at each point in time will result
in the confidence level committed to completing the mission or, given a desired confidence level, the
time-to-failure of a failing component.

Figure 7: Confidence Limits and Uncertainty Bounds

Assume that a prognostic algorithm predicts the following progression or evolution of a fault with the
associated  uncertainty  bounds:  at  current  time  (to),  a  fault  has  been  detected  and  isolated  and  the
prognostic routine is predicting the mean time-to-failure (Tfm), the earliest time to failure (Tfe), and the
latest  time  to  failure  of  (Tft),  as  shown  in  Figure  7.  The  hazard  line  specifies  the  fault  magnitude
(dimension) at which the component ceases to be operational (failure). 

Let us further assume that failure data is available to superimpose a distribution or distributions, as shown
pictorially in Figure 8. Strictly speaking, these “distributions” are either possibilistic (fuzzy) functions or
probability density functions.

Figure 8: Possibility Density Functions for Confidence Bounds
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Suppose further that the distribution at Tfm (crossing the hazard line) is as shown in Figure 9:

Figure 9: Distribution at the Hazard Line

As an example, assume that a pre-planned mission is estimated to require the availability of an asset
under consideration for time (T’). The integral under the distribution curve from T’ to infinity will give us
an estimate of the confidence level in terms of probability (or possibility). In other words, it will tell us
how confident we can be that the asset will not fail before the mission is completed. Now consider the
same distribution for a second example, where we specify a certain confidence level, say 95%, and would
like to find the time (T’’) that the component will remain operational prior to complete failure. Integrating
the distribution curve from T’’ to infinity and setting the result equal to the confidence limit (95% in our
example),  we solve for  T’’,  thus  arriving at  the  length of  time  (starting at  t o)  that  the  asset  will  be
available  within  the  desired  confidence  limit,  as  shown in  Figure  10.  We view this  procedure  as  a
dynamic evolution of our estimates. That is, as more data becomes available and time marches on, new
confidence limits are derived and the uncertainty bounds shrink through appropriate learning routines.
The procedure outlined above may eventually lead to specification of performance metrics for prognostic
systems. Such additional metrics may refer to the reliability of confidence limits, risk assessments, safety
specifications, etc.

Figure 10: Distribution at Hazard Line

Similarity compares more than one predicted time series against the real series from a starting point to a
certain point in the future.  This measurement can be computed as:

1

( , ) (1 )
max min

n
i i

i i i

x y
similarity x y




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
(1)

where xi and yi are two ith elements in two different time series, and max i and mini are the maximum and
minimum of all ith elements.
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Figure 11: Determining Similarity

Sensitivity measures how sensitive the prognostic algorithm is to input changes or external disturbances.
It is defined as:
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where out  equals the distance measure of two successive outputs and in  equals the distance measure of
two successive inputs. 

The mean of the prediction-to-failure time is calculated as:





N

i
pfpf it

N
tE

1

)(
1

}{
 (3)

where  tnf(i)  denotes  the  prediction-to-failure  time  for  the  ith experiment  and  N  is  the  number  of
experiments. Standard deviation of the prediction-to-failure time is calculated as:
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Many other prognostic metrics exist and the interested reader is directed to the listed references. 

Fundamentally,  the same problem that  exists  with diagnostic techniques also exists  with prognostics:
validating and verifying their functionality and uncertainty drivers. For this reason, a Prognostics Test
Bench is being designed to import “black box” physics or feature-based Remaining Useful Life (RUL)
prognostic models and automatically interrogate them and report critical information, such as parametric
sensitivities and certain prognostic metrics. A cornerstone of the program was to investigate and develop
Statistical  Influence  Models  (SIMs)  for  insertion  into  a  Prognostics  Testbench  in  the  MATLAB®
environment.  SIMs  are  defined  as  independent  models  that  ultimately  generate  parameters  (either
stochastic or deterministic) that influence a RUL distribution. These parameters include usage profiles,
manufacturing  defects,  random  damage  events,  build  tolerances,  material  condition,  inspection
capabilities, and integration of state awareness and predictive prognostics. The overall concept envisioned
for the Prognostic Testbench is shown in Figure 12. 

5th DSTO International Conference on Health & Usage Monitoring



AIAC12 – Twelfth Australian International Aerospace Congress
19 – 22 March 2007

Figure 12: Overall Concept for Model and Test Bench Development

The Importance of Ground Truth Choice in Metric Assessment: Ground truth is a representation of
the actual condition of the system and serves as a baseline for comparison between a feature/algorithm
result and the actual condition. Validation at all three levels – detection, isolation, and prognosis – relies
on ground truth data. Although the name itself implies an “absolutely true” representation, in most cases,
ground truth is  an  engineering  estimation  of  the  actual  condition  that  is  derived  from a  measurable
parameter  that  closely  matches  actual  condition.  Observable  ground  truth  may  be  based  on  visible
evidence, another feature or prediction result, or the damage severity curve. The ideal situation is for a
feature/algorithm to possess perfect agreement with the ground truth in some measurable way.  Metrics
are used to assess and report the degree to which this agreement occurs.  However, it is important to note
that features and algorithms that score well against one ground truth estimate could score lower against a
different ground truth estimate. Many factors can produce this effect. System overtraining is a large factor
that  can be controlled through careful  advance planning.  Acceptable  control  methods  include  robust
system  testing,  use  of  multiple  classifiers  through  knowledge  fusion,  and  data  reserve/hold-out
techniques. The data hold-out technique, which uses a 70/30 development versus test data role, is also an
effective preservation of ground truth integrity, given a substantive amount of data. Ground truth data for
EFV will derive from test stand fault characterization efforts and from operational data. 

Tools for Verification and Validation (V&V): As mentioned previously, robust tools for Verification
and Validation (V&V) can provide useful insights that are applicable to system development as well as
ongoing validation and improvement efforts. The ability to warehouse raw data, simulation models, and
system  configuration  information,  in  combination  with  an  interface  that  permits  easy  exercise  of
developed  detection,  isolation,  and  prognostic  algorithms,  would  add  significant  value  to  many
acquisition programs that  seek to employ PHM technology.  Such a tool  could incorporate real  data,
simulation models, and noise augmentation techniques to analyze the effectiveness and overall robustness
of  existing  and  emerging  technology.  Impact  Technologies,  LLC,  in  cooperation  with  the  Georgia
Institute of Technology,  is developing a web-based software application that  will  provide JSF (F-35)
system suppliers with a comprehensive set of PHM Verification and Validation (V&V) resources. The
application includes standards and definitions, V&V metrics for detection/diagnosis/prognosis, access to
costly seeded fault data sets and example implementations, a collaborative user forum for the exchange of
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information, and an automated tool to impartially evaluate the performance and effectiveness of PHM
technologies. This program is specifically focused on the development of a prototype software product
that will illustrate the feasibility of the techniques, methodologies, and approaches needed to verify and
validate  PHM capabilities.  The  approach being  pursued  to  assess  overall  PHM system accuracy,  as
illustrated in Figure 13, is to quantify the associated uncertainties at each individual subsystem level and
combine them through the PHM architecture to generate a system level uncertainty estimate. A team of
JSF  system  suppliers,  including  Pratt  &  Whitney,  Northrop  Grumman,  and  Honeywell,  are  being
assembled  to  provide  contributions,  feedback,  and  recommendations  regarding  the  product  under
development. 

Figure 13: JSF PHM V&V by Impact and Georgia Tech

SOME LESSONS LEARNED… SO FAR

As various programs to develop comprehensive diagnostic, prognostic and health management (PHM)
systems  progress,  many  lessons  are  learned.  Similarly,  as  specific  prognostic-directed  projects  are
undertaken, additional lessons are accrued. The following paragraphs discuss some of these accumulated
lessons learned to date.

Prognostic capabilities can be hard to develop and often take time to mature, but they are feasible
in many cases. Having said this, prognostics are certainly not feasible for all cases. There is a need to
identify the clearly unachievable cases and then address them in other ways  than through significant
prognostic efforts. Rather, focus limited resources on systems, subsystems, or components that are both
attainable  and  high  value,  such  as  the  propulsion  system,  drivetrain,  or,  occasionally,  electronics
equipment (depending on your mission and system design).

Look to share developments (costs) and find people with prognostic experiences in other platforms.
It is unlikely that any single platform or program can afford all of the resources required to support the
development  and validation of accurate useful life remaining prognostic capabilities on every desired
system, subsystem, and component. This is true even for only the feasible and high value components of a
complex platform like a modern fighter aircraft. To mitigate this high expenditure of resources on a single
platform,  a smart  strategy needs to be implemented.  This strategy should attempt to share prognostic
capability development costs across similarly interested program platforms and across groups of similar
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component  types.  The  intelligent  application  of  specifically  targeted  science  and  technology  efforts
outside of their particular platform program may also offer additional resources.

Really good diagnostics and incipient fault detection techniques that detect faults before functional
failure are important precursors to health-based prognostics. If we can detect a problem before it
becomes  a  functional  failure  to  be  diagnosed,  then  we  are  achieving  substantially  more  predictive
capability than we have in legacy systems.  This indication will also allow us to trigger the appropriate
prognostic model. The corollary statement is also very true and real: if you have developed very capable
and comprehensive diagnostic capabilities, then it necessarily follows that you will attempt to develop
prognostics.  There  are  a  few  exceptions  to  these  statements.  For  one,  system  or  subsystem  overall
performance degradation trending can be a very useful prognostic capability by itself.

Multiple types of models may be needed to achieve prognostic capabilities with accurate useful life
remaining predictions.  These types  of  models  can include sensor  calibration or  correlation models,
models of accumulated usage up to crack initiation, incipient fault or crack propagation models, statistical
and/or probabilistic based models. All of these individual supporting models need to be developed for
accuracy, validated, and integrated into a global prognostic model for the specific component and system
application.

PHM is a multidisciplinary engineering problem. The successful development of global prognostics
models  and  accurate  useful  life  remaining  predictive  capabilities  requires  a  development  team with
expertise in various disciplines. This development teams needs a mixture of material science experts; state
awareness  sensor  experts;  several  types  of  modeling  and data  fusion experts;  specific  component  of
interest  design specialists;  statistical  and probabilistic  modeling  specialists;  and traditional  diagnostic
experts. Don’t make the mistake of thinking, “Since it’s largely software, I’ll let the software design folks
handle it.” That will result in highly-efficient but largely worthless PHM software. The core of PHM, like
any other engineered system, is applied engineering knowledge from multiple disciplines. 

PHM a life cycle endeavor and maturity takes time and fielded experience. It takes significant data,
experience,  and  maturation time  to develop  accurate  prognostic  and useful  life  remaining  prediction
capabilities.  This is true in some cases more than others; since there are always  “low hanging fruit”
examples  where  degradation  always  occurs  along  easily  understood  trend  lines.  This  statement  is
particularly true for accurate useful life remaining prediction capabilities and for specific components
where physics of failure models are not well understood or where root cause failure mechanisms are very
random.  It  is  important  to remember  that  sophisticated prognostic capabilities require lots  of  data  to
develop and ample time to mature, so be sure to include sufficient maturation time when planning your
program.

Performance  degradation  capture  and trending is  “low hanging fruit”  in  many  systems. Often
straightforward system or subsystem performance degradation trending, without any accurate useful life
remaining predictions, can be a very useful form of prognostics. This represents a prognostic capability in
its simplest form, but it can be extremely useful to the fleet operator. This type of prognostic trending is
best applied in combination with case-based reasoning or when physics of failure models for specific
components are not available.

Although  good  Failure  Modes  and  Effects  Analyses  (FMECA)  won’t  give  us  prognostics  by
themselves, they are a necessary starting point.  Thorough and up-to-date FMECAs identify failure
modes and their related symptoms while prioritizing high occurrence failure modes and critical failure
path components. These capabilities help to identify high value components for prognostic coverage.
FMECAs can also be very useful in uncovering the interrelationships between the dependent elements of
components, whether they are located within a single system or across interconnected subsystems.
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Subsystem component seeded fault testing is extremely useful but can be prohibitively expensive.
Plan for a few seeded fault tests and use them wisely. Don’t jump into testing too soon just to try to make
some progress. Instead, begin with a resourced testing strategy to maximize the capture of performance
degradation AND incipient fault-to-failure data whenever possible in a piggybacked environment. This
would  include  planning  to  capture  this  invaluable  data  during  all  possible  system,  subsystem,  and
component developmental testing, qualification testing, environmental tests, final acceptance tests, etc.

Be ready to justify why you are developing PHM … again! When the platform program funding cuts
come (and they always  will),  prognostic capabilities will  often be the first  to be scrutinized for cost
reduction. Prepare for this and develop a well designed strategy to counter these arguments and articulate
the specific benefit justifications.

SUMMARY AND CONCLUSIONS

The fleet needs and benefit impacts of real predictive prognostics are evident, real, and substantial. There
are several types of prognostic capabilities with varying levels of sophistication, from simple trending
techniques to multiple integrated modeling approaches. The prognostic definitions used for these different
approaches may also vary and are continuously evolving with the technology in this multidisciplinary
field.

Real predictive prognostic capabilities are just one element among many interrelated and complementary
functions in the field of PHM. Beginning with a solid foundation for monitoring and detection, a good
PHM  system  deploys  a  wide  array  of  techniques  to  achieve  its  ultimate  result.  Analysis  of  PHM
effectiveness at each level provides not only the verification and validation required to measure overall
performance, but also provides the legitimate feedback required for ongoing PHM system development
and evolution. 

This  paper  has  explored  the  background,  benefit,  impact,  and  current  playing  field  for  predictive
prognostics; highlighted some specific design challenges and issues; discussed the various degrees of
prognostic  capabilities  and  metrics;  and  drew heavily on  lessons  learned  from previous  and  current
prognostic  development  efforts.  Techniques  were  discussed  to  mitigate  the  effects  of  system
specialization and algorithm overtraining.  The prognostic measures  presented encompass  measures of
effectiveness from two different viewpoints (maintainer/commander). Finally, the need for ongoing PHM
metrics analysis and tool development was established. The Joint Strike Fighter, along with many other
current acquisition programs, will benefit from a more in depth look at verification and validation tool
development from performance and requirements development perspectives.

The challenges involved in developing and implementing prognostic capabilities are many, and this paper
has focused very much on those impacting and enabling benefits associated with new performance-based
logistic support concepts, global sustainment strategies, and new business practices. The presentation of
this paper will focus on these concepts and demonstrate some of the tools employed.
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